Binomial Probability Distribution

\&
Normal Probability Distribution

Tips \& Formulas:

1. Always make sure that the problem you are working on is properly written in a format that contains $x=, x \leq, x \geq$, or $\leq x \leq$.
2. Use the following formulas to find the mean and standard deviation of the binomial probability distribution:
(a) $\mu=n p$
(b) $\sigma=\sqrt{n p q}$

Binomial Distribution	Normal Distribution
$P(x=a)=$	$P(x=a) \approx P(a-0.5<x<a+0.5)=$
binompdf (n, p, a)	normalcdf $(a-0.5, a+0.5, \mu, \sigma)$
$P(x \leq a)=$	$P(x \leq a) \approx P(x<a+0.5)=$
$\operatorname{binomcdf}(n, p, a)$	$P(x \geq a) \approx P(x>a-0.5)=$
$P(x \geq a)=1-P(x \leq a-1)=$	normalcdf $(-E 99, a+0.5, \mu, \sigma)$
$1-\operatorname{binomcdf}(n, p, a-1)$	$P(a \leq x \leq b) \approx P(a-0.5<x<b+0.5)=$
$P(a \leq x \leq b)=$	normalcdf $(a-0.5, b+0.5, \mu, \sigma)$
$\operatorname{binomcdf}(n, p, b)-\operatorname{binomcdf}(n, p, a-1)$	

