Binomial Probability Distribution & Normal Probability Distribution

Tips & Formulas:

- 2. Use the following formulas to find the mean and standard deviation of the binomial probability distribution:
 - (a) $\mu = np$

(b)
$$\sigma = \sqrt{npq}$$

Binomial Distribution	Normal Distribution
P(x=a) =	$P(x = a) \approx P(a - 0.5 < x < a + 0.5) =$
$\mathbf{binompdf}(n, p, a)$	$\mathbf{normalcdf}(a - 0.5, a + 0.5, \mu, \sigma)$
$P(x \le a) =$	$P(x \le a) \approx P(x < a + 0.5) =$
$\mathbf{binomcdf}(n, p, a)$	$\mathbf{normalcdf}(-E99, a + 0.5, \mu, \sigma)$
$P(x \ge a) = 1 - P(x \le a - 1) =$	$P(x \ge a) \approx P(x > a - 0.5) =$
$1-\mathbf{binomcdf}(n, p, a-1)$	$\mathbf{normalcdf}(a - 0.5, E99, \mu, \sigma)$
$P(a \le x \le b) =$	$P(a \le x \le b) \approx P(a - 0.5 < x < b + 0.5) =$
binomcdf (n, p, b) - binomcdf $(n, p, a - 1)$	$\mathbf{normalcdf}(a-0.5, b+0.5, \mu, \sigma)$